
Lab 4
Psychology 319 (GCM)

Instructions. Work through the lab, saving the output as you go. If you work
in Microsoft Word, you can easily copy any graph to Word via the clipboard.
Numerical output may also be copied easily by highlighting, moving it to the
clipboard, then copying into Word. However, you should format R output
in TrueType Courier New font so that it is monospaced. Output from this
lab is to be handed in by Monday, February 22. Your output file should be
named LAST_FIRST_LAB4.DOC, where LAST is your last name, and FIRST is
your first name. Any additional files should have the same naming scheme,
except the file extension should be correct. You may add any description
text you wish after LAB4 in the file name.

Preamble. Today’s lab involves the use of R’s capabilities to produce
“empirical Bayes” estimates of individual’s trajectories after fitting a model.

1 Introduction

A key aspect of multilevel modeling, as emphasized in standard textbooks,
is its ability to generate improved estimates that take into account the reli-
ability of information. For example, suppose you have a set of growth curve
data on a group of individuals.

In some cases, you may be interested in computing individual trajecto-
ries. You can estimate individual trajectories using OLS, and the slopes and
intercepts estimated this way will be unbiased. But will they be optimal?

In one sense, they won’t. Another kind of estimation will yield better
estimates. These estimates, known as “Empirical Bayes” (EB) estimates,
have a specific optimality property. As Raudenbush and Bryk (2002, p. 67)
put it,

To be precise, this estimator is optimal in the specific sense that
no other point estimator of β0j has smaller expected mean square
error, where the expectation is taken over the conditional distri-
bution of β0j , σ

2, and τ00.

HLM will generate EB estimates automatically and put them in its level-
2 residuals file. On the other hand, R is not so kind or convenient, and a
little work is required.
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Singer and Willett (p. 132–137) discuss how to calculate EB estimates
in the context of the longitudinal study on alcohol use. In particular, they
generate a hand-calculated example of EB estimates of the slope and regres-
sion line for Subject 23 under Model F. In what follows, we’ll review the
Singer-Willett calculations and demonstrate how to reproduce them for all
82 participants simultaneously.

2 Calculating Model-Based Estimates of Slope and
Intercept

In model F, PEER is centered (we use a derived variable CPEER) while COA

is not. The intercepts therefore represent a child of non-alcoholic parents
whose peers at age 14 are average consumers (PEER = 1.018 and COA = 0).

The level-2 models are

π0i = γ00 + γ01COAi + γ02CPEERi + ζ0i (1)

π1i = γ10 + γ12CPEERi + ζ1i (2)

Make sure that you have the file alcohol1 pp.txt available in your working
directory.

While HLM works in terms of the level-1 and level-2 breakdown, R works
directly with the composite model specification. As we saw before, the
composite model F given in Singer and Willett Table 4.2 can be fit in R
routinely as follows:

> library(lme4)

> alcohol1 <- read.table("alcohol1_pp.txt", header=T, sep=",")

> attach(alcohol1)

> time <- age_14

> model.f <- lmer(alcuse ~ coa + cpeer + time + cpeer:time +

+ (time | id),REML=FALSE)

R does produce a list of subject-specific coefficients using its coef com-
mand. However, these are the coefficients for the composite model. To
construct subject-specific estimates for slopes and intercepts, we need to use
fixed effect coefficients and random effect estimates, as described by Singer
and Willett in their equation 4.21, page 135, which unfortunately has ty-
pographical errors. As the errata on the Singer-Willett website notes, the
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formulas should read

π̃0i = π̂0i + ζ̂0i (3)

π̃1i = π̂1i + ζ̂1i (4)

Note that π̃0i and π̃1i are the EB estimates for the intercept and slope,
respectively, for the ith individual.

They are produced by constructing each person’s π̂s using Equations
1 and 2 with fixed effect estimates of the γs, then adding each person’s
estimated residual (random effect).

Singer and Willett perform this calculation for individual 23 on page
134–135. Here’s how to do these calculations simultaneously for all the
individuals in the study.

First, let’s take a look at the fixed effects.

> fixef(model.f)

(Intercept) coa cpeer time cpeer:time

0.3938747 0.5711965 0.6951827 0.2705847 -0.1513771

These are the numbers that Singer and Willett use in their Equations
4.20. We simply need to apply them to the values of COA and CPEER for
each individual.

There is a minor technical problem we have to overcome, however. That
is, our data frame is in long format, so each individual has more than one
line. One way of overcoming the problem is to reshape the alcohol1 data
frame, like this:

> persons <- reshape(alcohol1,direction="wide",timevar="age_14")

Now each person has one line. It is straightforward (if somewhat intri-
cate) to construct the individual slopes and intercepts as follows. (Study
the syntax carefully, and investigate how it works. In particular, note the
method I employed to access the results of the ranef call.)

> intercepts <- fixef(model.f)[1] + fixef(model.f)[2]*persons$coa.1 +

+ fixef(model.f)[3] * persons$cpeer.1 + ranef(model.f)$id[,1]

> intercepts

[1] 1.466501640 0.354769464 1.177198241 1.083144762 0.298896328

[6] 2.222071008 1.594276367 -0.014144590 0.366621830 1.247484803

[11] 0.162541781 0.843896505 0.097601682 2.419908571 1.793085869
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[16] 1.090901632 0.486112532 1.629196899 -0.014144590 2.658701201

[21] 1.351539598 2.172258380 0.588405995 0.173071615 2.043366406

[26] 0.794290955 1.664390172 0.298896328 0.354769464 1.218328913

[31] 1.970267115 0.858253072 0.565129077 0.228944750 1.033833684

[36] 1.046083872 1.710609215 0.614191581 0.048511542 0.620884051

[41] 0.839930528 0.048511542 0.048511542 0.167853721 1.660120231

[46] 0.127528087 0.235727746 -0.264529376 -0.264529376 0.178177338

[51] -0.264529376 0.235727746 -0.264529376 -0.208656240 0.277673420

[56] 0.774142568 -0.264529376 0.768695183 0.196337959 0.001703373

[61] 1.602944386 0.048511542 -0.264529376 0.547880081 0.444410087

[66] 1.444843525 0.367070815 -0.077313172 0.048511542 1.102008170

[71] 0.048511542 0.048511542 -0.264529376 0.726877523 0.361552459

[76] -0.264529376 0.471308322 0.048511542 0.864715525 0.651062127

[81] 0.277673420 0.822898005

> slopes <- fixef(model.f)[4] + fixef(model.f)[5]*persons$cpeer.1 +

+ ranef(model.f)$id[,2]

> slopes

[1] 0.288971847 0.224867026 0.779000528 0.351961444 -0.021404448

[6] 0.412723047 0.015094651 0.146727534 1.057308517 -0.056812246

[11] 0.925506323 0.204179404 0.639270482 0.303098136 0.275055559

[16] 0.207182256 0.036067140 -0.106377843 0.146727534 -0.310899997

[21] 0.205233679 -0.191853855 0.499425521 0.204199122 0.049949700

[26] 0.261266428 -0.156966626 -0.021404448 0.224867026 0.319122579

[31] 0.478644612 0.246808825 0.384347593 0.450470596 -0.218342322

[36] 0.327639242 0.580777677 0.599522373 0.077078265 -0.230338812

[41] 0.260813791 0.077078265 0.077078265 1.065301766 0.482612078

[46] 0.425358718 0.134549853 0.245210247 0.245210247 0.007435717

[51] 0.245210247 0.134549853 0.245210247 0.491481720 -0.046002899

[56] 0.641796438 0.245210247 0.630266536 0.728651322 0.650962287

[61] 0.227652433 0.077078265 0.245210247 0.742701206 0.413187757

[66] 0.759611298 -0.054250033 0.302681834 0.077078265 -0.251187908

[71] 0.077078265 0.077078265 0.245210247 0.604220574 -0.091053716

[76] 0.245210247 0.854916268 0.077078265 0.422540799 0.429776253

[81] -0.046002899 0.160921234

Problem 1. Using the same approach, obtain EB estimates of the indi-
viduals’ slopes and intercepts for Model C fit to the alcohol data.
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